# 地理空间数据的内容
# 数字线化图(Digital Line Graphic:DLG)
基于实体,可以单独选择
是与现有线划基本一致的矢量数据集,且保存各要素间的空间关系和相关的属性信息
# 数字栅格地形图(Digital Raster Graphic:DRG)
纸质地形图数字化产品,不能单独选择,常用于背景
# 数字高程模型(Digital Elevation Model:DEM)
它是自然地貌高程值的集合,能够反映较稳定地貌形态,主要用来描述地形
主要分为ASTER-GDEM(精度大约在30米)、SRTM1(精度大约在30米)、SRTM3(精度大约在90米)
# 数字正射影像(Digital Orthophoto Map:DOM)
影像数据,来源于卫星影像、航空影像,直观详细
先生产DEM,以DEM为数据源生产DOM,它是DEM经正射纠正的产品
因为DEM不包括人工地物的高程,所以DOM中人工地物还是存在投影变形的,比如说高大的房屋、烟囱等,在DOM中还是能看到明显的倾斜
# 数字表面模型(Digital Surface Model:DSM)
是指包含了地表建筑物、桥梁和树木等高度的地面高程模型
和DEM相比,DEM只包含了地形的高程信息,并未包含其它地表信息
DSM是在DEM的基础上,进一步涵盖了除地面以外的其它地表信息的高程
在一些对建筑物高度有需求的领域,得到了很大程度的重视
倾斜摄影
无人机倾斜摄影可生成数字正射影像(DOM)、数字高程模型(DEM)、数字表面模型(DSM)
倾斜摄影的目的主要是创建实景三维模型,航摄时同时有不同方向的航摄影像,比较常见的是五镜头倾斜摄影。相比传统的正射影像,倾斜摄影的优势是建筑物几乎无死角,这样在创建实景三维模型时建筑物很少有空洞
# 无人机搭载激光雷达和倾斜摄影的区别
# 地面点点位数据
激光雷达采集的点云数据是直接通过激光发射器获取的地面点点位数据
倾斜摄影是通过照片密集匹配和空三加密得到的地面点点位数据
前者是直接获取,后者是空三加密后得到
# 点位精度
倾斜摄影点位精度是不如激光扫描精度的,它获取到的数据主要是模型数据,纹理较好,易于判别画图
激光雷达精度高,数据成果是离散点云数据,纹理一般
# 总结
倾斜摄影精度较低(厘米级),纹理好,无法过滤植被,模型画图(适合各类地物)
激光雷达精度高(毫米级),离散,纹理一般,可以过滤植被,切片画图(适合房屋等人工建筑)
# 地理空间数据的获取
# 野外数据采集
精度高、效率低,适合小范围、局部数量的更新
- 平板测量:根据光学的反光原理
- 经纬仪测量:根据测角原理设计的水平角、竖直角和视距进行测量
- 全站仪测量:集成电子经纬仪和激光测距仪,可同时测量空间目标的距离和方位
- RTK测量:一般是厘米级精度而全站仪可以达到毫米及精度
- GNSS测量:全球导航卫星系统,GIS重要的数据采集手段
四大卫星导航系统
美国的GPS(24颗卫星),中国的BDS(百斗,28颗),俄罗斯的Glonass(格洛纳斯),欧洲的Galileo(伽利略)
# 地图数字化
建立图像坐标与地图坐标的映射关系,也称为图纸定向
- 手扶跟踪数字化
- 扫描数字化
- 地面摄影测量
# 摄影测量
测制各种比例尺得地形图,得到影像图
- 航天摄影测量
- 航空摄影测量
- 地面摄影测量
# 遥感图像处理
无接触的远距离探测,通过卫星、无人机等使用遥感传感器对地球照像,遥感数据属于栅格数据
# 点云数据
LiDar技术:激光扫描与探测,简称激光雷达,具有精准、快速获取三维信息的优势
- 机载LiDar测量
- 地面LiDar测量
# 众源地理数据
来源广泛,由非专业个人或单位生产的地理数据,例如:OpenStreetMap:OSM 交通路网
# 人工手制或建模
利用专用建模软件,全靠人工去绘制矢量数据或模型
常用软件平台:3DMax、Maya进行人工建模, Revit 进行BIM建模
# 地理空间数据的格式
矢量数据(shp)、正射/高程影像数据(tif)、点云(las)、倾斜摄影模形(osgb)
Fbx和obj都支持目前主流的三维模型软件,是通用的3d文件格式,不同的是,fbx格式可以带材质的
# TIF
TIF文件为栅格图像文件,后缀为tif或tiff,是ogc规范的一种,全称GeoTiff
通常需要用GIS软件查看tif栅格影像数据的坐标系信息,因为它的坐标系信息写在数据文件内部
tif可以有8位,24位等深度,一般真彩色是24位,而地形数据只有一个高度值,采用8 位
目前很多卫星影像数据、地形数据的存储格式都是tif
# DEM
.dem有两种格式,NSDTF和USGS
- SGS-DEM(USGS是美国地质调查局(U.S.GeologicalSurvey)的英文缩写,是一种公开格式的DEM数据格式标准,使用范围较广格式的
- NSDTF-DEM是中华人民共和国国家标准地球空间数据交换格式,是属于格网数据交换格式,一般的GIS软件都不支持这种格式
# SHP
Shapefile文件是ESRI公司ArcGIS平台的常用格式文件,是工业标准的矢量数据文件
Shapefile将空间特征表中的非拓扑几何对象和属性信息存储在数据集中,特征表中的几何对象存为以坐标点集表示的图形文件SHP文件,Shapefile文件并不含拓扑(Topological)数据结构
它必须至少由三个文件组成:.shp 要素几何、.shx 形状索引、.dbf 属性数据,通常还会包含以下文件:.prj 投影描述
- 主文件(.shp):存储坐标数据
- 索引文件(.shx):存储坐标数据的索引信息
- 属性表文件(.dbf):存储属性数据
- 投影文件(.prj):存储空间坐标系信息
- 编码文件(.cpg):存储文件(.dbf文件)的编码信息,此文件作用不大
可以通过shapefile-js (opens new window)等诸多开源库进行转换到 GeoJSON 进行使用
shapefile的文件大小有限制
组成shapefile的文件大小有一定的限制,而不是整个shapefile的大小,shapefile文件组中每个文件的大小不能超过2GB。相应的,dbf文件不能超过2GB,shp文件不能超过2GB,这两个是最有可能超过2GB的文件。shape属性出现点zm
在ArcGIS中,我们常用的几何类型有点、线、面、体(体,在涉及三维的情况下使用),但在这之外,可能会遇到带ZM的类型,点ZM,它与点类似,但比点多两个字段 ,Z值是用来存储高程属性信息的,M值是用来存储其他属性信息的,如温度、浓度等
# GeoJSON
GeoJSON 是一种使用JavaScript 对象表示法(JSON) 对地理数据结构进行编码的格式。简而言之,GeoJSON 为你提供了一种简单的格式来表示简单的地理特征以及它们的非空间属性。
GeoJSON将所有的地理要素分为:Point、MultiPoint、LineString、MultiLineString、Polygon、MultiPolygon、GeometryCollection,首先是将这些要素封装到单个的geometry 里,然后作为一个个的Feature(要素),要素放到一个要素集合里构成
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [-80.83775386582222, 35.24980190252168]
},
"properties": {
"name": "DOUBLE OAKS CENTER",
"address": "1326 WOODWARD AV"
}
},
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [-80.83827000459532, 35.25674709224663]
},
"properties": {
"name": "DOUBLE OAKS NEIGHBORHOOD PARK",
"address": "2605 DOUBLE OAKS RD"
}
}
]
}
面(Polygon)比线多了一层[],并且第一个点跟最后一个点是相同的,为啥会多出一层,因为我们日常接触的面还会有中间带孔洞的形式,例如行政区划中很特殊的人文现象——飞地
GeometryCollection 对象没有"coordinates"成员,而是有一个名为"geometries"的成员。"geometries"的值是一个数组。该数组的每个元素都是一个 GeoJSON Geometry 对象。此数组可能为空
Feature:在 GeoJSON 中,Feature类型的对象定义实体的几何形状和属性
- type:Feature
- geometry:其值为我们上面讨论的任何几何形状或空值
- properties:定义了该对象的属性
- id:(可选)该成员带有一个唯一的字符串或空值,用于指定功能的标识符
FeatureCollection:Feature 对象的组合
- type:FeatureCollection
- features:Feature 对象的数组
杂项 — 边界框:用于定义 GeoJSON 对象的边界范围
{
"type": "FeatureCollection",
"bbox": [100.0, 0.0, 105.0, 1.0],
"features": [
//...
]
}
# GeoJSON与EsriJSON的对比与转换
Esri JSON是由Esri公司定义的一种GeoJSON格式的扩展,用于表示地理空间要素及其属性信息。与标准的GeoJSON相比,Esri JSON增加了一些属性和元素,以支持Esri ArcGIS产品族的规范。
转换方式
//https://github.com/terraformer-js/terraformer/blob/main/packages/arcgis/README.md
npm install @terraformer/arcgis
//EsriJSON转GeoJSON
import { arcgisToGeoJSON } from "@terraformer/arcgis"
arcgisToGeoJSON({
"x":-122.6764,
"y":45.5165,
"spatialReference": {
"wkid": 4326
}
});
>> { "type": "Point", "coordinates": [ -122.6764, 45.5165 ] }
//GeoJSON转EsriJSON
import { geojsonToArcGIS } from "@terraformer/arcgis"
geojsonToArcGIS({
"type": "Point",
"coordinates": [45.5165, -122.6764]
})
>> { "x":-122.6764, "y":45.5165, "spatialReference": { "wkid": 4326 } }
对比
//要素(Feature)
// GeoJSON
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [125.6, 10.1]
},
"properties": {
"name": "Dinagat Islands"
}
}
// EsriJSON
{
"attributes": {
"OBJECTID": 1,
"Name": "Sample",
"Type": "Building"
},
"geometry": {
"rings": [[[0,0],[0,10],[10,10],[10,0],[0,0]]],
"spatialReference": { "wkid": 4326 }
}
}
//Point(点)
// GeoJSON
"geometry":{
"type":"Point",
"coordinates":[105.380859375,31.57853542647338]
}
// EsriJSON
{
"x": -122.690899,
"y": 45.512296
}
//MultiPoint(多点)
// GeoJSON
"geometry":{
"type":"MultiPoint",
"coordinates":[
[105.380859375,31.57853542647338],
[105.580859375,31.52853542647338]
]
}
// EsriJSON
{
"points": [[-122.68,45.50],[-122.70,45.52],[-122.68,45.53]],
"spatialReference": { "wkid": 4326 }
}
//LineString(线)
// GeoJSON - 依次连接点
"geometry":{
"type":"LineString",
"coordinates":[
[105.6005859375,30.65681556429287],
[107.9516601562,31.98944183792288],
[109.3798828125,30.03105542654020],
[107.7978515625,29.93589521337244]
]
}
// EsriJSON
{
"paths": [
[[0,0],[5,5],[10,10]]
],
"spatialReference": { "wkid": 4326 }
}
//MultiLineString(多线)
// GeoJSON
"geometry":{
"type":"MultiLineString",
"coordinates":
[
[
[105.6005859375,30.65681556429287],
[107.9516601569,31.98944183792288],
[109.3798828125,30.03105542654020],
[107.7978515625,29.93589521332444]
],
[
[109.3798828125,30.03105542654020],
[107.1978515625,31.23589521337244]
]
]
}
// EsriJSON
{
"paths": [
[[0,0],[5,5],[10,10]],
[[15,15],[20,25],[30,30]]
],
"spatialReference": { "wkid": 4326 }
}
//Polygon(面)
// GeoJSON
"geometry":{
"type": "Polygon",
"coordinates":
[
[
[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]
]
]
}
// EsriJSON
{
"rings": [
[[0,0],[0,10],[10,10],[10,0],[0,0]]
],
"spatialReference": { "wkid": 4326 }
}
//MultiPolygon(多面)
// GeoJSON
"geometry": {
"type": "MultiPolygon",
"coordinates":
[
[
[
[109.2041015625,30.088107753367257],
[115.02685546875,30.088107753367257],
[115.02685546875,32.7872745269555],
[109.2041015625,32.7872745269555],
[109.2041015625,30.088107753367257]
]
],
[
[
[112.9833984375,26.82407078047018],
[116.69677734375,26.82407078047018],
[116.69677734375,29.036960648558267],
[112.9833984375,29.036960648558267],
[112.9833984375,26.82407078047018]
]
]
]
}
# .osgb
倾斜模型,Open Scene Gragh Binary是OSGB的全称,这里的Binary是二进制的意思,一般是二进制存贮的、带有嵌入式链接纹理数据
# .obj(人工建模)
Obj是三维模型的一个万能格式,大部分三维软件都支持,obj文件一般包含obj,mtl,纹理图片三个文件
# .dwg与.dxf
- dwg文件:AutoCAD的图形文件格式,是二维或三维图形档案。其与dxf文件是可以互相转化的
- dxf文件:AutoCAD推出与其它软件平台之间进行数据交换的一种开放的矢量数据格式
由于AutoCAD是最流行的CAD系统,DXF也被广泛使用,成为事实上的标准。绝大多数CAD系统都能读入或输出DXF文件
# .gdb与.mdb
- gdb是文件地理数据库,是在文件系统文件夹中保存的各种类型的GIS数据集的集合
- mdb是个人地理数据库,是以access数据库为基础的,可以存储不超过2G的文件,只适合Windows
# WKB/WKT
- WKT(Well-known Text) 使用文本表达几何对象的一种标记语言
- WKB(Well-known Binary) 使用二进制表达几何对象的一种标记语言
下图分表是使用WKT与GeoJSON分别描述同一几何的差异:
可以看出其主要还是为了表达几何对象,相较 GeoJSON 而言,其无法存储属性数据,这种数据格式在很多数据库中都用以表达几何数据类型,日常开发中可以方便地使用 wkx (opens new window) 来进行格式转换
# .kml
KML,最初为Google定义的文件格式,用以描述地图中的关键数据,如路径、标记位置、叠加图层等信息。因此,使用KML文件可以记录一个简单的只包含街道、路径、多边形、标记位置等信息的简单地图,不包含高程、地形地貌等复杂信息。KML文件最终被OGC组织采纳为国际通行标准
KML文件本质上是一个XML文件,完全遵循XML文件格式。KML文件定义了几个特殊的元素标签:
- Placemark:标记或路径
- Linestring:路劲的坐标点
- Point:标记位置的坐标
- Coordinates:经纬度坐标
一个KML文件如下所示:
<?xml version="1.0" encoding="utf-8" ?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document id="root_doc">
<Folder>
<name>高速公路</name>
<Placemark>
<name>卫岗隧道</name>
<Style>
<LineStyle>
<color>ffff0000</color>
</LineStyle>
<PolyStyle>
<fill>0</fill>
</PolyStyle>
</Style>
<LineString>
<coordinates>118.8385657,32.0429378 118.8338431,32.0439411</coordinates>
</LineString>
</Placemark>
<Placemark>
<name>南京长江隧道</name>
<Style>
<LineStyle>
<color>ffff0000</color>
</LineStyle>
<PolyStyle>
<fill>0</fill>
</PolyStyle>
</Style>
<LineString>
<coordinates>118.67057150000001,32.0543862 118.6921381</coordinates>
</LineString>
</Placemark>
</Folder>
<Folder>
<name>市级地名</name>
<Placemark>
<name>南京市</name>
<Point><coordinates>118.79126,32.06042</coordinates></Point>
</Placemark>
<Placemark>
<name>马鞍山市</name>
<Point><coordinates>118.49952,31.69933</coordinates></Point>
</Placemark>
</Folder>
# 常见瓦片地图地址
- 高德电子地图 (opens new window)
- 高德卫星地图 (opens new window)
- GeoQ午夜蓝 (opens new window)
- 腾讯电子地图 (opens new window)
- 天地图电子地图 (opens new window)
- 天地图卫星地图 (opens new window)
# 地形分类标准
- 0°~0.5°为平原 => 0.00872686779075879
- 0.5°~2°为微斜坡 => 0.03492076949174773
- 2°~5°为缓斜坡 => 0.08748866352592401
- 5°~15°为斜坡 => 0.2679491924311227
- 15°~35°为陡坡 => 0.7002075382097097
- 35°~55°为峭坡 => 1.4281480067421144
- 55°~90°为垂直壁 => 以上
# 卫星星历TLE格式说明
卫星星历,又称为两行轨道数据(TLE,Two-Line Orbital Element)
# 重要的几个网站
- Space-Track (opens new window)
- https://celestrak.com/ (opens new window)
- 卫星跟踪 (opens new window)
- 卫星计算js (opens new window)
- 卫星计算c# (opens new window)
# tle数据说明
BEIDOU 3
//01:行号 1
//03-07:卫星ID,NORAD_CAT_ID, 36287
//08:保密级别 U
//10-11:发射年份 10
//12-14:发射编号 001
//15-17:发射编号 A
//19-20:TLE数据发布时间年份 21
//21-32:TLE数据发布时间第几天 187.60806788
//34-43:平均运动的一阶时间导数,用来计算每一天平均运动的变化带来的轨道漂移,提供给轨道计算软件预测卫星的位置。两行式轨道数据使用这个数据校准卫星的位置
//45-52:平均运动的二阶时间导数,用来计算每一天平均运动的变化带来的轨道漂移,提供给轨道计算软件预测卫星的位置
//54-61:BSTAR阻力系数,用于大气阻力对卫星运动的影响
//63:美国空军空间指挥中心内部使用的为1;美国空军空间指挥中心以外公开使用标识为0
//65-68:星历编号,TLE数据按新发现卫星的先后顺序的编号
//69:校验和,指这一行的所有非数字字符,按照“字母、空格、句点、正号= 0;负号=1”的规则换算成0和1后,将这一行中原来的全部数字加起来,以10为模计算后所得的和。
// 校验和可以检查出90%的数据存储或传送错误。按十进制加起来的个位数字的校验和,用于精确纠正误差
1 36287U 10001A 21187.60806788 -.00000272 00000-0 00000-0 0 9992
//01:行号 1
//03-07:卫星ID,NORAD_CAT_ID, 36287
//09-16:轨道面与赤道面夹角 1.9038
//18-25: 升交点赤经,升交点赤经是指卫星由南到北穿过地球赤道平面时,与地球赤道平面的交点 经度47.2796 纬度0
//27-33:轨道偏心率 0.0005620 圆形为0
//35-42:近地点幅角 82.9429
//44-51:平近点角 153.9116
//53-63:每天环绕地球的圈数 1.00269947 , 周期1,436.12 分钟
//64-68: 发射以来飞行的圈数 4204
//69:校验和
2 36287 1.9038 47.2796 0005620 82.9429 153.9116 1.00269947 42045
# 轨道参数
轨道根数(或称轨道要素或轨道参数)是描述在牛顿运动定律和牛顿万有引力定律的作用下的天体或航天器,在其开普勒轨道上运动时,确定其轨道所必要的六个参数。
传统上使用的轨道根数,是在开普勒和他的开普勒定律之后发展出来的,称为开普勒元素,主要有六个参数:
- 离心率(e):也就是椭圆两焦点的距离和长轴比值。对于圆,它就是0
- 半长轴(a):是椭圆长轴的一半。对于圆,也就是半径
- 轨道倾角(i):这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0
- 升交点黄经(Ω):卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经
- 近日点辐角(ω):这是近地点和升交点对地心的张角,这个值则确定了轨道在轨道平面里的位置
- 在指定历元的平近点角(Mo)(或是近日点通过时间(To)):卫星位置随时间的变化需要一个初值
离心率和半长轴决定了轨道的形状,轨道倾角和升交点黄经决定了卫星轨道平面在空间的位置
# 坐标系
- ECI:earth centered inertial惯性坐标系
坐标原点取在地心,X轴指向春分点,Z轴指向北极,Y轴与前者构成右手系。该系不与地球一同转动,因此可以应用牛顿定律
- ECEF:地固坐标系
该坐标系以地球质心为原点,Z轴向北沿地球自转轴方向,X轴指向经纬度的(0,0)位置,右手系Y轴指向90度经线。该系与地球一同转动。
地球坐标系固定在地球上而随地球一起在空间做公转和自转运动,因此地球上任一固定点在地球坐标系的坐标就不会由于地球旋转而变化。地心地固直角坐标系和大地坐标系都属于这种坐标系。
# 气象数据
MICAPS系统的数据结构 (opens new window)
# 气象风场UV,风向说明
用角度表示风向,是把圆周分成360度,北风(N)是0度(即360度),东风(E)是90度,南风(S)是180度,西风(W)是270度,其余的风向都可以由此计算出来
# U和V表示
U是东西风上的分量,西风为正。V是南北风上的分量,南风为正
空间数据表达 →